

Communication

Subscriber access provided by ISTANBUL TEKNIK UNIV

Synthesis and Reaction of Fullerene C Encapsulating Two Molecules of H

Michihisa Murata, Shuhei Maeda, Yuta Morinaka, Yasujiro Murata, and Koichi Komatsu J. Am. Chem. Soc., 2008, 130 (47), 15800-15801 • DOI: 10.1021/ja8076846 • Publication Date (Web): 30 October 2008 Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Synthesis and Reaction of Fullerene C70 Encapsulating Two Molecules of H2

Michihisa Murata,[†] Shuhei Maeda,[†] Yuta Morinaka,[†] Yasujiro Murata,^{*,†,‡} and Koichi Komatsu^{*,†,§}

Institute for Chemical Research, Kyoto University, and PRESTO, Japan Science and Technology Agency (JST), Uji,

Kyoto 611-0011, Japan

Received September 29, 2008; E-mail: yasujiro@scl.kyoto-u.ac.jp; komatsu@fukui-ut.ac.jp

Endohedral fullerene C_{60} encapsulating a H_2 molecule ($H_2@C_{60}$) has become an attractive object for fundamental studies since its organic synthesis¹ by the technique of "molecular surgery".² The encapsulated H_2 has served as a powerful NMR probe to study magnetic properties of ionic C_{60} derivatives³ and to follow chemical reactions taking place at the exterior of the C_{60} cage.⁴ The synthesis of $H_2@C_{60}$ has also opened up the way to elucidate the intrinsic nature of a single H_2 molecule surrounded by the carbonaceous cage. Thus, Turro and co-workers have disclosed various physical properties of H_2 within C_{60} such as an interaction with ¹O₂ outside of the cage,⁵ interconversion of ortho- H_2 and para- H_2 ,⁶ and a spin—lattice relaxation rate.⁷ Also an anisotropic rotation of H_2 inside a cage-opened C_{60} derivative was studied by the use of solidstate NMR by Levitt and co-workers.⁸

By applying the molecular surgical method to a representative higher fullerene, C_{70} , we recently achieved the insertion of one and two molecules of H₂ inside a cage-opened C_{70} derivative to provide H₂@1 and (H₂)₂@1 and clarified the dynamic behavior of the two molecules of H₂ within the cage.⁹ Herein, we report the synthesis of cage-closed C_{70} encapsulating one and two H₂ molecules and the reactivity of (H₂)₂@C₇₀ as compared to H₂@C₇₀ in a Diels–Alder reaction with 9,10-dimethylanthracene (DMA).

As shown in Scheme 1, the mixture of H₂@1 and (H₂)₂@1 (97: 3)⁹ was oxidized with *m*-chloroperbenzoic acid (MCPBA) and subjected to subsequent photoelimination of the resulting SO unit to afford 12-membered-ring compounds (H₂)_n@2 (n = 1, 2) in 57% yield. Then, two carbonyl groups were coupled by McMurry reaction to give eight-membered-ring compounds (H₂)_n@3 in 61% yield. Finally, thermolysis of (H₂)_n@3 at 400 °C under vacuum for 2 h provided endohedral fullerene (H₂)_n@C₇₀ (n = 1, 2) (contaminated with 10% empty C₇₀) in 56% as a brown powder.

The ¹H NMR spectrum of the crude product from the thermal reaction (Scheme 1, step d) in 1,2-dichlorobenzene- d_4 (ODCB- d_4) exhibited a sharp signal for the encapsulated H_2 inside C_{70} at such a high field as $\delta = -23.97$ ppm, along with a small signal for $(H_2)_2 @C_{70}$ at $\delta = -23.80$ ppm with an integrated ratio being 97:6 (Figure 1). This indicates that the molar ratio of $H_2@C_{70}$ and $(H_2)_2 @C_{70} \mbox{ is the same as that of } H_2 @1 \mbox{ and } (H_2)_2 @1. The difference$ in these chemical shifts ($\Delta \delta = 51$ Hz) is apparently larger than that between ³He@C₇₀ and (³He)₂@C₇₀ ($\Delta \delta = 6$ Hz),¹⁰ reported by Saunders and co-workers. The two molecules of H₂ or two atoms of ³He should be located along the longer axis of the oval cage with a dynamic behavior of the positional exchange. Along this axis there exists a small gradient in the intensity of the magnetic field with the intensity being lower at the center of the C_{70} cage.¹⁰ Therefore, the observed difference in $\Delta\delta$ values could be ascribed to the geometry of the two molecules of H_2 of $(H_2)_2@C_{70}$, which should be more off-centered than that of the two atoms of ${}^{3}\text{He}$ of $({}^{3}\text{He})_{2}@C_{70}$ due to the sterics.

Scheme 1. Synthesis of H₂@C₇₀ and (H₂)₂@C₇₀^a

^{*a*} Reagents and conditions: (a) MCPBA, CS₂, rt, 10 h, 66%. (b) Visible light, benzene, 40 °C, 5 h, 86%. (c) TiCl₄, Zn, ODCB/THF, 80 °C, 40 min, 61%. (d) 400 °C, vacuum, 2 h, 56%.

Figure 1. ¹H NMR (300 MHz, in ODCB- d_4) signals of the encapsulated H₂ of H₂@C₇₀ and (H₂)₂@C₇₀.

In the ¹³C NMR spectrum of H₂@C₇₀ in ODCB-*d*₄, five signals appeared at $\delta = 150.95$, 148.39, 147.71, 145.72, and 131.24 ppm. All of the signals were slightly shifted to downfield as compared to those of empty C₇₀ in the range $\Delta \delta = 0.02-0.07$ ppm. It should be noted that these $\Delta \delta$ values are smaller than that between H₂@C₆₀ and empty C₆₀ ($\Delta \delta = 0.08$ ppm).^{1,4a} This indicates that the van der Waals interaction between inner H₂ and outer C₇₀ is quite minute, as compared to that of H₂@C₆₀, reflecting the larger space inside C₇₀. In accord with this, the UV-vis and IR spectra of H₂@C₇₀ were almost identical to those of empty C₇₀.

We previously reported that $H_2@C_{60}$ and empty C_{60} are separable^{1,4a} by the use of recycling HPLC on a semipreparative Cosmosil Buckyprep column. Under similar conditions (two directly connected columns; 250 mm length, 20 mm inner diameter; mobile

[†] Kyoto University.

^{*} PRESTO, JST.

[§] Present address: Department of Environmental and Biotechnological Chemistry, Fukui University of Technology, Gakuen, Fukui 910-8505, Japan.

phase, toluene; flow rate, 6 mL/min; 50 °C), $H_2@C_{70}$ was separated from empty C_{70} after 15 recycles with the total retention time being 1081 and 1073 min, respectively. Furthermore, a fraction eluted just after that of $H_2@C_{70}$ was found to contain $(H_2)_2@C_{70}$ with increased concentration (18%) together with $H_2@C_{70}$ (82%). By repeating this HPLC purification three times, $(H_2)_2@C_{70}$ was completely isolated (<1 mg), which exhibited the correct molecularion peak at m/z = 844 ($C_{70}H_4$) upon MALDI-TOF mass spectrometry.

Scheme 2. Diels–Alder Reaction of $H_2@C_{70}$ and $(H_2)_2@C_{70}$ with DMA in ODCB- d_4

Table 1. Equilibrium Constants K_1 and K_2 and Free Energy Differences ΔG_1 and ΔG_2 for Addition of DMA to $H_2@C_{70}$ and $(H_2)_2@C_{70}$ in ODCB- d_4 at 30, 40, and 50 °C

	<i>T</i> (°C)	30	40	50
H ₂ @C ₇₀	$K_1 (M^{-1})$	364	177	88.4
$(H_2)_2@C_{70}$	$ \Delta G_1 \text{ (kcal/mol)} K_2 (M^{-1}) \Delta G_2 \text{ (kcal/mol)} $	-3.55 296 -3.43	-3.22 143 -3.09	-2.88 74.7 -2.77

Although the interaction between the encapsulated H_2 and C_{70} cage is quite minute for H₂@C₇₀, there is still a possibility that a difference in chemical reactivity of the outer cage becomes appreciable when two molecules of H2 are incorporated inside the cage. To clarify this, we investigated the Diels-Alder reaction of $H_2@C_{70}$ and $(H_2)_2@C_{70}$ with DMA: the addition of DMA to C_{70} is known to occur reversibly at room temperature (Scheme 2).¹¹ Thus, a solution of a mixture of H2@C70, (H2)2@C70, and C70 (molar ratio, 70:2:28; total concentration, 13.8 mM) and DMA (6.11 mM) in ODCB-d₄ was prepared.¹² The NMR spectrum exhibited new signals for the encapsulated H₂ of monoadducts H₂@4 and $(H_2)_2@4$ at $\delta = -22.22$ and -21.80 ppm, respectively,¹³ in addition to the H₂ signals of unreacted H₂@C₇₀ and (H₂)₂@C₇₀. The equilibrium constants at 30, 40, and 50 °C were determined based on the intensity of the NMR signals of the encapsulated H₂ and the concentration of unreacted DMA.¹³ Table 1 summarizes the equilibrium constants K_1 and free-energy difference ΔG_1 for the addition of DMA to H₂@C₇₀, together with K₂ and ΔG_2 for that to $(H_2)_2 @C_{70}$. As shown, the K_2 value is smaller than the K_1 value by more than 15% at each temperature, demonstrating the "apparently" decreased reactivity of $(H_2)_2@C_{70}$ toward DMA. The van't Hoff plot of ln K_1 or ln K_2 versus 1/T gave excellent linear fits and provided ΔH_1 and ΔH_2 as $-13.8\,\pm\,0.1$ and $-13.4\,\pm\,0.2$ kcal/mol, respectively, and ΔS_1 and ΔS_2 as -33.7 ± 0.3 and -32.9 ± 0.6 cal/mol·K, respectively.14

As a related study, Saunders and co-workers reported the decreased reactivity of 129 Xe@C₆₀ to the addition of DMA as compared to that of 3 He@C₆₀.¹⁵ The encapsulated Xe atom was

suggested to have substantial interaction with C₆₀ and change the electron distribution of C₆₀.¹⁵ Thus, we conducted theoretical calculations for $H_2@C_{70}$ and $(H_2)_2@C_{70}$ using the MPWB1K functional with the 6-31G(d,p) basis set.^{16,17} It was shown that the long axis of the C_{70} cage of $(H_2)_2@C_{70}$ is elongated only by 0.02 Å, while the short axis is shortened by 0.02 Å, as compared to those of $H_2@C_{70}$. Also, the energy levels of the frontier orbitals of H₂@C₇₀ and (H₂)₂@C₇₀ are almost identical. However, the encapsulation of two molecules of H2 into C70 is shown to be exothermic by -9.3 kcal/mol after BSSE correction. This stabilization energy of $(H_2)_2@C_{70}$ is higher than that of $H_2@C_{70}$ (-6.9 kcal/mol), indicating more interaction is present between two molecules of H₂ and the C₇₀ cage. Hence, it would be also reasonable to ascribe the observed difference in reactivity between H2@C70 and (H₂)₂@C₇₀ to the increased electron density on the exterior of the cage.

In conclusion, we have synthesized and characterized new endohedral fullerene C_{70} encapsulating one and two molecules of H_2 by the molecular surgical method. Although the interaction between H_2 and C_{70} is minute, $(H_2)_2@C_{70}$ showed smaller ΔG values concerning the Diels—Alder reaction with DMA as compared to that to $H_2@C_{70}$.

Acknowledgment. This research was supported by the Global COE Program "Integrated Materials Science" (#B-09) and KAK-ENHI from MEXT/JSPS and the PRESTO program sponsored by JST.

Supporting Information Available: Experimental procedures, spectroscopic data, optimized geometries of new compounds, and data for monitoring the equilibrium reaction. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238.
- (2) (a) Rubin, Y. Chem.-Eur. J. 1997, 3, 1009. (b) Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun. 2008, in press.
- (a) Murata, M.; Ochi, Y.; Tanabe, F.; Komatsu, K.; Murata, Y. Angew. Chem., Int. Ed. 2008, 47, 2039. (b) Murata, M.; Ochi, Y.; Kitagawa, T.; Komatsu, K.; Murata, Y. Chem. Asian J. 2008, 3, 1336.
 (4) (a) Murata, M.; Murata, Y.; Komatsu, K. J. Am. Chem. Soc. 2006, 128,
- (4) (a) Murata, M.; Murata, Y.; Komatsu, K. J. Am. Chem. Soc. 2006, 128, 8024.
 (b) Matsuo, Y.; Isobe, H.; Tanaka, T.; Murata, Y.; Murata, M.; Komatsu, K.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 17148.
- (5) Lopez-Gejo, J.; Marti, A. A.; Ruzzi, M.; Jockusch, S.; Komatsu, K.; Tanabe, F.; Murata, Y.; Turro, N. J. *J. Am. Chem. Soc.* **2007**, *129*, 14554.
 (6) Turro, N. J.; Marti, A. A.; Chen, J. Y.-C.; Jockusch, S.; Lawler, R. G.;
- (6) Turro, N. J.; Marti, A. A.; Chen, J. Y.-C.; Jockusch, S.; Lawler, R. G.; Ruzzi, M.; Sartori, E.; Chuang, S.-C.; Komatsu, K.; Murata, Y. J. Am. Chem. Soc. 2008, 130, 10506.
- (7) Sartori, E.; Ruzzi, M.; Turro, N. J.; Komatsu, K.; Murata, Y.; Lawler, R. G.; Buchachenko, A. L. J. Am. Chem. Soc. 2008, 130, 2221.
- (8) Carravetta, M.; Murata, Y.; Murata, M.; Heinmaa, İ.; Stern, R.; Tontcheva, A.; Samoson, A.; Rubin, Y.; Komatsu, K.; Levitt, M. H. J. Am. Chem. Soc. 2004, 126, 4092.
- (9) Murata, Y.; Maeda, S.; Murata, M.; Komatsu, K. J. Am. Chem. Soc. 2008, 130, 6702.
- (10) Khong, A.; Jiménez-Vázquez, H. A.; Saunders, M.; Cross, R. J.; Laskin, J.; Peres, T.; Lifshitz, C.; Strongin, R.; Smith, A. B., III. J. Am. Chem. Soc. 1998, 120, 6380.
- (11) Lamparth, I.; Maichle-Mossmer, C.; Hirsch, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 1607.
- (12) Wang, G.-W.; Saunders, M.; Cross, R. J. J. Am. Chem. Soc. 2001, 123, 256.
- (13) See Supporting Information for details.
- (14) A ΔH value for the DMA addition to ³He@C₇₀ in 1-methylnaphthalene– CD₂Cl₂ (4:1) was reported as -22.1 kcal/mol; see ref 15.
- (15) Frunzi, M.; Cross, R. J.; Saunders, M. J. Am. Chem. Soc. 2007, 129, 13343.
 (16) Frisch, M. J. et al. Gaussian 03, revision D.02; Gaussian, Inc.: Wallingford,
- (17) Slanina, Z.; Pulay, P.; Nagase, S. J. Chem. Theory Comput. 2006, 2, 782.

JA8076846